β淀粉样蛋白PET成像阳性人群的脑葡萄糖代谢研究进展Advances in Brain Glucose Metabolism Research in Individuals with Positive Amyloid-Protein PET Imaging
申佳妮,张肖南,吕亮亮,陈金雨,赵娅蓉,李阳
摘要(Abstract):
阿尔茨海默病(AD)是常见的神经退行性疾病,也是全球范围痴呆的主要原因,目前尚无有效治疗方法。AD的早期发现与诊断,对改善预后具有重要的临床意义。研究表明,淀粉样蛋白PET和18F-氟脱氧葡萄糖(18F-FDG)PET成像有助于AD的早期诊断。本文对PET成像β淀粉样蛋白阳性的不同人群的脑葡萄糖代谢及二者间关系的研究进展做一综述。
关键词(KeyWords): 阿尔茨海默病;β-淀粉样蛋白;18F-氟脱氧葡萄糖;正电子发射断层显像
基金项目(Foundation): 山西省医学重点攻关专项(认知障碍疾病患者多模态智能评估与干预系统研制及示范应用,No.2020XM22);; 中央引导地方科技发展专项资金项目(慢病患者多模态疾病感知及健康医疗大数据平台建设,No.YDZX20191400002563);; 山西省基础研究计划(基于功能及代谢影像学技术探讨PD-MCI患者双任务下异常步态的神经机制研究,No.202203021221255)
作者(Author): 申佳妮,张肖南,吕亮亮,陈金雨,赵娅蓉,李阳
DOI: 10.16780/j.cnki.sjssgncj.20221084
参考文献(References):
- [1] Anon. 2022 Alzheimer’s disease facts and figures[J]. Alzheimers Dement, 2022, 18(4):700-789.
- [2] Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework:Toward a biological definition of Alzheimer's disease[J].Alzheimers Dement, 2018, 14(4):535-562.
- [3] Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism[J]. Nat Commun,2015, 6:6807.
- [4] Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer's disease:an updated hypothetical model of dynamic biomarkers[J]. Lancet Neurol, 2013, 12(2):207-216.
- [5] Alavi A, Dann R, Chawluk J, et al. Positron emission tomography imaging of regional cerebral glucose metabolism[J]. Semin Nucl Med,1986, 16(1):2-34.
- [6] Edison P, Archer H, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease:an[11C]PIB and[18F]FDG PET study[J].Neurology, 2007, 68(7):501-508.
- [7] Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade[J]. Lancet Neurol, 2010, 9(1):119-128.
- [8] Chen X, Zhou Y, Wang R, et al. Potential Clinical Value of Multiparametric PET in the Prediction of Alzheimer's Disease Progression[J]. PloS One, 2016, 11(5):e0154406.
- [9] Iaccarino L, Sala A, Perani D. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET[J]. Ann Clin Transl Neurol, 2019, 6(6):1113-1120.
- [10] Lowe VJ, Weigand SD, Senjem ML, et al. Association of hypometabolism and amyloid levels in aging, normal subjects[J].Neurology, 2014, 82(22):1959-1967.
- [11] Hu H, Chen KL, Ou YN, et al. Neurofilament light chain plasma concentration predicts neurodegeneration and clinical progression in nondemented elderly adults[J]. Aging(Albany NY), 2019, 11(17):6904-6914.
- [12] Dubois B, Epelbaum S, Nyasse F, et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease(INSIGHT-preAD):a longitudinal observational study[J]. Lancet Neurol, 2018, 17(4):335-346.
- [13] Hatashita S, Wakebe D. Amyloid β deposition and glucose metabolism on the long-term progression of preclinical Alzheimer's disease[J]. Future Sci OA, 2019, 5(3):FSO356.
- [14] Altmann A, Ng B, Landau SM, et al. Regional brain hypometabolism is unrelated to regional amyloid plaque burden[J]. Brain,2015, 138(Pt 12):3734-3746.
- [15] Pascoal TA, Mathotaarachchi S, Kang MS, et al. A β-induced vulnerability propagates via the brain's default mode network[J]. Nat Commun, 2019, 10(1):2353.
- [16] Carbonell F, Zijdenbos AP, Bedell BJ, et al. Spatially Distributed Amyloid-β Reduces Glucose Metabolism in Mild Cognitive Impairment[J]. Alzheimers Dis, 2020, 73(2):543-557.
- [17] Weise CM, Chen K, Chen Y, et al. Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment[J]. Neuroimage Clin, 2018, 20:286-296.
- [18] Ben Bouallègue F, Mariano-Goulart D, Payoux P, et al. Joint Assessment of Quantitative 18F-Florbetapir and 18F-FDG Regional Uptake Using Baseline Data from the ADNI[J]. J Alzheimers Dis, 2018, 62(1):399-408.
- [19] Myoraku A, Klein G, Landau S, et al. Regional uptakes from early-frame amyloid PET and F-FDG PET scans are comparable independent of disease state[J]. Eur J Hybrid Imaging, 2022, 6(1):2.
- [20] Strom A, Iaccarino L, Edwards L, et al. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease[J]. Brain, 2022, 145(2):713-728.
- [21] Tondo G, Boccalini C, Vanoli EG, et al. Brain Metabolism and Amyloid Load in Individuals With Subjective Cognitive Decline or Pre-Mild Cognitive Impairment[J]. Neurology, 2022, 99(3):e258-e269.
- [22] Ehrlich D, Dunzinger A, Malsiner-Walli G, et al. Lack of association between cortical amyloid deposition and glucose metabolism in early stage Alzheimer’s disease patients[J]. Radiol Oncol, 2021, 56(1):23-31.
- [23] Librizzi D, Cabanel N, Zavorotnyy M, et al. Clinical Relevance of[F]Florbetaben and[F]FDG PET/CT Imaging on the Management of Patients with Dementia[J]. Molecules, 2021, 26(5):1282
- [24] Jing J, Zhang F, Zhao L, et al. Correlation Between Brain 18F-AV45and 18F-FDG PET Distribution Characteristics and Cognitive Function in Patients with Mild and Moderate Alzheimer’s Disease[J]. J Alzheimers Dis, 2021, 79(3):1317-1325.
- [25] Zhou DA, Xu K, Zhao X, et al. Spatial Distribution and Hierarchical Clustering of β-Amyloid and Glucose Metabolism in Alzheimer's Disease[J]. Front Aging Neurosci, 2022, 14:788567.
- [26] Sun X, Chen WD, Wang YD. β-Amyloid:the key peptide in the pathogenesis of Alzheimer's disease[J]. Front Pharmacol, 2015, 6:221.
- [27] Schilling LP, Pascoal TA, Zimmer ER, et al. Regional Amyloid-βLoad and White Matter Abnormalities Contribute to Hypometabolism in Alzheimer’s Dementia[J]. Mol Neurobiol, 2019, 56(7):4916-4924.
- [28] Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer's disease--lessons from pathology[J]. BMC Med, 2014, 12:206.
- [29] Kalheim LF, Selnes P, Bj?rnerud A, et al. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities[J].Front Neurol, 2016, 7:209.
- [30] Gaubert M, Lange C, Garnier-Crussard A, et al. Topographic patterns of white matter hyperintensities are associated with multimodal neuroimaging biomarkers of Alzheimer's disease[J]. Alzheimers Res Ther,2021, 13(1):29.
- [31] Weaver NA, Doeven T, Barkhof F, et al. Cerebral amyloid burden is associated with white matter hyperintensity location in specific posterior white matter regions[J]. Neurobiol Aging, 2019, 84:225-234.
- [32] Rabin JS, Schultz AP, Hedden T, et al. Interactive Associations of Vascular Risk and β-Amyloid Burden With Cognitive Decline in Clinically Normal Elderly Individuals:Findings From the Harvard Aging Brain Study[J]. JAMA Neurol, 2018, 75(9):1124-1131.
- [33] Roy S, Rauk A. Alzheimer’s disease and the‘ABSENT’hypothesis:mechanism for amyloid beta endothelial and neuronal toxicity[J]. Med Hypotheses, 2005, 65(1):123-137.
- [34] Huang CW, Hsu SW, Chang YT, et al. Cerebral Perfusion Insufficiency and Relationships with Cognitive Deficits in Alzheimer’s Disease:A Multiparametric Neuroimaging Study[J]. Sci Rep, 2018, 8(1):1541.
- [35] Vagnucci AH, Li WW. Alzheimer’s disease and angiogenesis[J].Lancet, 2003, 361(9357):605-608.
- [36] Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer's disease:an analysis of population-based data[J].Lancet Neurol, 2014, 13(8):788-794.
- [37] Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly[J].Arch Neurol, 2008, 65(11):1509-1517.
- [38] Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease[J]. N Engl J Med,2014, 370(4):322-333.
- [39] Honig LS, Vellas B, Woodward M, et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer's Disease[J]. N Engl J Med, 2018, 378(4):321-330.
- [40] Egan MF, Kost J, Voss T, et al. Randomized Trial of Verubecestat for Prodromal Alzheimer's Disease[J]. N Engl J Med, 2019, 380(15):1408-1420.
- [41] Henley D, Raghavan N, Sperling R, et al. Preliminary Results of a Trial of Atabecestat in Preclinical Alzheimer's Disease[J]. N Engl J Med,2019, 380(15):1483-1485.
- [42] Wessels AM, Tariot PN, Zimmer JA, et al. Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease:The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials[J].JAMA Neurol, 2020, 77(2):199-209.