人工智能在青少年特发性脊柱侧凸诊疗中的应用Application of Artificial Intelligence in Diagnosis and Treatment of Adolescent Idiopathic Scoliosis
金晓庆,张军卫,陈世铮,谢玉磊
摘要(Abstract):
青少年特发性脊柱侧凸(adolescent idiopathic scoliosis,AIS)发病率高,病因尚不明确,导致患者体型异常和腰背部疼痛,影响身心健康。早发现、早矫治是获得良好效果的关键。随着人工智能(artificial intelligence,AI)的高速发展,其在医疗领域得到广泛应用。目前AI在AIS领域的筛查、治疗和转归预测等方面已显示出巨大的潜力,涌现出众多具有出色表现和广阔应用前景的方案与模型,本文对此进行综述。
关键词(KeyWords): 青少年特发性脊柱侧凸;人工智能;综述
基金项目(Foundation): 中国残联课题残疾人辅助器具专项(No.2023CDPFAT-15)
作者(Author): 金晓庆,张军卫,陈世铮,谢玉磊
DOI: 10.16780/j.cnki.sjssgncj.20240083
参考文献(References):
- [1] Negrini S, Donzelli S, Aulisa AG, et al. 2016 SOSORT guidelines:orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth[J]. Scoliosis Spinal Disord, 2018, 13:3.
- [2] Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis[J]. Lancet, 2008,371:1527-1537.
- [3] Kuznia AL, Hernandez AK, Lee LU. Adolescent Idiopathic Scoliosis:Common Questions and Answers[J]. American family physician, 2020,101:19-23.
- [4]陈晨.青少年身体姿态异常问题研究及防控政策建议[J].中国体育科技, 2022, 58:35-39.
- [5] Hornung AL, Hornung CM, Mallow GM, et al. Artificial intelligence in spine care:current applications and future utility[J]. Eur Spine J, 2022,31:2057-2081.
- [6] Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020, 9:14.
- [7]张松兰.基于卷积神经网络的图像识别综述[J].西安航空学院学报,2023, 41:74-81.
- [8] Ravi D, Wong C, Deligianni F, et al. Deep Learning for Health Informatics[J]. IEEE J Biomed Health Inform, 2017, 21:4-21.
- [9] Wu C, Meng G, Lian J, et al. A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis[J]. Eur Radiol, 2022, 32:5880-5889.
- [10] Chan, Wing-Yu, Yip, et al. Mechanical and Clinical Evaluation of a Shape Memory Alloy and Conventional Struts in a Flexible Scoliotic Brace[J]. Annals of Biomedical Engineering the Journal of the Biomedical Engineering Society, 2018.
- [11] Meng N, Cheung J, Wong KK, et al. An artificial intelligence powered platform for auto-analyses of spine alignment irrespective of image quality with prospective validation[J]. EClinicalMedicine, 2022, 43:101252.
- [12] Aung YYM, Wong DCS, Ting DSW. The promise of artificial intelligence:a review of the opportunities and challenges of artificial intelligence in healthcare[J]. British medical bulletin, 2021, 139:4-15.
- [13] Caesarendra W, Rahmaniar W, Mathew J, et al. Automated Cobb Angle Measurement for Adolescent Idiopathic Scoliosis Using Convolutional Neural Network[J]. Diagnostics(Basel), 2022, 12:396.
- [14]庄乾宇.青少年特发性脊柱侧凸的病因学研究现状和进展[J].中华骨与关节外科杂志, 2021, 14:337-343.
- [15]儿童青少年脊柱弯曲异常防控技术指南编写组,马军.《儿童青少年脊柱弯曲异常防控技术指南》解读[J].中国学校卫生, 2022, 43:165-170.
- [16] Karpiel I, Ziebinski A, Kluszczynski M, et al. A Survey of Methods and Technologies Used for Diagnosis of Scoliosis[J]. Sensors(Basel),2021, 21:8410.
- [17] Dunn J, Henrikson NB, Morrison CC, et al. Screening for Adolescent Idiopathic Scoliosis:Evidence Report and Systematic Review for the US Preventive Services Task Force[J]. JAMA, 2018, 319:173-187.
- [18] Meiring AR, de Kater EP, Stadhouder A, et al. Current models to understand the onset and progression of scoliotic deformities in adolescent idiopathic scoliosis:a systematic review[J]. Spine Deform, 2023, 11:545-558.
- [19] Wong JC, Reformat MZ, Parent EC, et al. Validation of an artificial intelligence-based method to automate Cobb angle measurement on spinal radiographs of children with adolescent idiopathic scoliosis[J]. Eur J Phys Rehab Med, 2023, 59:535-542.
- [20] Maeda Y, Nagura T, Nakamura M, et al. Automatic measurement of the Cobb angle for adolescent idiopathic scoliosis using convolutional neural network[J]. Scientific reports, 2023,13:14576.
- [21] Chen L, Papandreou G, Schroff F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation[Z]. Ithaca:Cornell University Library, arXiv.org, 2017.
- [22] Liu J, Yuan C, Sun X, et al. The measurement of Cobb angle based on spine X-ray images using multi-scale convolutional neural network[J].Phys Eng Sci Med, 2021, 44:809-821.
- [23] Honkela T, Duch W, Girolami M, et al. Transforming Auto-Encoders[M]. Germany:Springer Berlin/Heidelberg, 2011:44-51.
- [24] Wang H, Zhang T, Cheung KM, et al. Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit[J]. EClinicalMedicine, 2021, 42:101220.
- [25] Shan H, Zhang Y, Yang Q, et al. 3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network[J]. IEEE transactions on medical imaging, 2018, 37:1522-1534.
- [26] Shan H, Padole A, Homayounieh F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction[J]. Nat Mach Intell, 2019, 1:269-276.
- [27] Lee D, Choi S, Kim H. Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography[J]. Nuclear instruments&methods in physics research. Section A,Accelerators, spectrometers, detectors and associated equipment, 2018,884:97-104.
- [28] Nemoto M, Chida K. Reducing the Breast Cancer Risk and Radiation Dose of Radiography for Scoliosis in Children:A Phantom Study[J].Diagnostics(Basel), 2020, 10:753.
- [29] Greiner KA. Adolescent idiopathic scoliosis:radiologic decision-making[J]. Am Fam Physician, 2002, 65:1817-1822.
- [30] Kokabu T, Kanai S, Kawakami N, et al. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection[J]. Spine J, 2021, 21:980-987.
- [31] Watanabe K, Aoki Y, Matsumoto M. An Application of Artificial Intelligence to Diagnostic Imaging of Spine Disease:Estimating Spinal Alignment From Moire Images[J]. Neurospine, 2019, 16:697-702.
- [32] Yang J, Zhang K, Fan H, et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J].Communications biology, 2019, 2:390.
- [33] Samadi B, Raison M, Mahaudens P, et al. A preliminary study in classification of the severity of spine deformation in adolescents with lumbar/thoracolumbar idiopathic scoliosis using machine learning algorithms based on lumbosacral joint efforts during gait[J]. Comput Methods Biomech Biomed Engin, 2023, 26:1341-1352.
- [34] McAviney J, Mee J, Fazalbhoy A, et al. A systematic literature review of spinal brace/orthosis treatment for adults with scoliosis between 1967and 2018:clinical outcomes and harms data[J]. BMC Musculoskelet Disord, 2020, 21:87.
- [35] Addai D, Zarkos J, Bowey AJ. Current concepts in the diagnosis and management of adolescent idiopathic scoliosis[J]. Childs Nerv Syst, 2020,36:1111-1119.
- [36]张玉芳,关天民,郭侨阁,等.基于3D打印技术的个性化脊柱侧弯矫形支具数字化设计[J].中国组织工程研究, 2019, 23:5824-5829.
- [37] Wynne JH, Houle LR. Short-Term Outcomes of the Boston Brace 3D Program Based on SRS and SOSORT Criteria:A Retrospective Study[J].Children(Basel), 2022, 9:842.
- [38] Lin Y, Cheung JPY, Chan CK, et al. A Randomized Controlled Trial to Evaluate the Clinical Effectiveness of 3D-Printed Orthosis in the Management of Adolescent Idiopathic Scoliosis[J]. Spine(Philadelphia,Pa. 1976), 2022, 47:13.
- [39] Fuss FK, Ahmad A, Tan AM, et al. Pressure Sensor System for Customized Scoliosis Braces[J]. Sensors(Basel, Switzerland), 2021, 21:1153.
- [40] Murzac R, Doicin CV, Ulmeanu ME, et al. Mathematical, detailed and parametric modelling for smart spinal orthoses[J]. IOP conference series.Materials Science and Engineering, 2021, 1018:12007.
- [41]李会军,陈蕊,宋爱国.基于分布式触觉感知的智能脊柱矫形装置研究[J].传感技术学报, 2020, 33:351-357.
- [42]赵德竹,关天民,吴斌,等.基于模糊逻辑青少年特发性脊柱侧弯矫形器设计专家系统的设计与实现[J].中国组织工程研究, 2020, 24:5255-5261.
- [43]朱策,吴强,肖冰,等.智能支具个性化管理系统治疗青少年特发性脊柱侧凸的初步临床观察[J].中国修复重建外科杂志, 2021, 35:801-806.
- [44] Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis:a new classification to determine extent of spinal arthrodesis[J]. J Bone Joint Surg Am, 2001, 83:1169-1181.
- [45] Rahmaniar W, Suzuki K, Lin TL. Auto-CA:Automated Cobb Angle Measurement Based on Vertebrae Detection for Assessment of Spinal Curvature Deformity[J]. IEEE Trans Biomed Eng, 2024, 71:640-649.
- [46] Phan P, Mezghani N, Wai EK, et al. Artificial neural networks assessing adolescent idiopathic scoliosis:comparison with Lenke classification[J]. Spine J, 2013, 13:1527-1533.
- [47] Hetherington J, Lessoway V, Gunka V, et al. SLIDE:automatic spine level identification system using a deep convolutional neural network[J].International journal for computer assisted radiology and surgery, 2017,12:1189-1198.
- [48] Kosterhon M, Gutenberg A, Kantelhardt SR, et al. Three-dimensional Cross-Platform Planning for Complex Spinal Procedures:A New Method Adaptive to Different Navigation Systems[J]. Clin Spine Surg, 2017, 30:E1000-E1009.
- [49] De Salvatore S, Vadala G, Oggiano L, et al. Virtual Reality in Preoperative Planning of Adolescent Idiopathic Scoliosis Surgery Using Google Cardboard[J]. Neurospine, 2021, 18:199-205.
- [50] Peng L, Lan L, Xiu P, et al. Prediction of Proximal Junctional Kyphosis After Posterior Scoliosis Surgery With Machine Learning in the Lenke 5 Adolescent Idiopathic Scoliosis Patient[J]. Front Bioeng Biotechnol, 2020, 8:559387.
- [51] Koller H, Hitzl W, Marks MC, et al. Accurate prediction of spontaneous lumbar curve correction following posterior selective thoracic fusion in adolescent idiopathic scoliosis using logistic regression models and clinical rationale[J]. Eur Spine J, 2019, 28:1987-1997.
- [52] Zhang H, Huang C, Wang D, et al. Artificial Intelligence in Scoliosis:Current Applications and Future Directions[J]. J Clin Med, 2023, 12:7382.
- [53] Chang J, Yu L, Li Q, et al. Development and Clinical Trial of a New Orthopedic Surgical Robot for Positioning and Navigation[J]. J Clin Med,2022, 11:7091.
- [54] Akazawa T, Torii Y, Ueno J, et al. Accuracy of computer-assisted pedicle screw placement for adolescent idiopathic scoliosis:a comparison between robotics and navigation[J]. Eur Spine J, 2023, 32:651-658.
- [55]陈豪杰,朱贤友,董亮,等.青少年特发性脊柱侧弯矫形术中机器人辅助植钉的研究[J].中国修复重建外科杂志, 2021, 35:1457-1462.
- [56] Dunn J, Henrikson NB, Morrison CC, et al. Screening for Adolescent Idiopathic Scoliosis:Evidence Report and Systematic Review for the US Preventive Services Task Force[J]. JAMA, 2018, 319:173-187.
- [57] Yahara Y, Tamura M, Seki S, et al. A deep convolutional neural network to predict the curve progression of adolescent idiopathic scoliosis:a pilot study[J]. BMC Musculoskelet Disord, 2022, 23:610.
- [58] Wang H, Zhang T, Zhang C, et al. An intelligent composite model incorporating global/regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening[J]. EBioMedicine, 2023, 95:104768.
- [59] Garcia-Cano E, Arambula CF, Duong L, et al. Prediction of spinal curve progression in Adolescent Idiopathic Scoliosis using Random Forest regression[J]. Comput Biol Med, 2018, 103:34-43.
- [60] Zhang T, Zhu C, Zhao Y, et al. Deep Learning Model to Classify and Monitor Idiopathic Scoliosis in Adolescents Using a Single Smartphone Photograph[J]. JAMA Netw Open, 2023, 6:e2330617.
- [61] Meng N, Wong KK, Zhao M, et al. Radiograph-comparable image synthesis for spine alignment analysis using deep learning with prospective clinical validation[J]. EClinicalMedicine, 2023, 61:102050.
- [62] Chen P, Zhou Z, Yu H, et al. Computerized-Assisted Scoliosis Diagnosis Based on Faster R-CNN and ResNet for the Classification of Spine X-Ray Images[J]. Comput Math Methods Med, 2022, 2022:3796202.
- [63] Alfraihat A, Samdani AF, Balasubramanian S. Predicting curve progression for adolescent idiopathic scoliosis using random forest model[J]. PLoS One, 2022, 17:e273002.
- [64] Y?lmaz HG, Büyükaslan A, Ku?vuran A, et al. A New Clinical Tool for Scoliosis Risk Analysis:Scoliosis Tele-Screening Test[J]. Asian spine journal, 2023, 17:656-665.
- [65]杨冉,陈洪淼,杨乐,等.青少年特发性脊柱侧弯体医工融合干预平台——“青少年脊柱小卫士”的应用与特点[J].文体用品与科技, 2022,23:142-145.