原位递送槲皮素的PECT温敏水凝胶对大鼠脊髓损伤的修复作用Repair Efficacy of PECT Thermosensitive Hydrogel for in Situ Delivery of Quercetin on Spinal Cord Injury in Rats
孙明明,张双悦,王秋颖,荆瀛黎,白帆,于艳
摘要(Abstract):
目的:探讨负载槲皮素(quercetin,QR)的含环醚侧基聚己内酯-聚乙二醇三嵌段共聚物(PECT)温敏水凝胶对大鼠脊髓损伤(spinal cord injury,SCI)的修复作用。方法:制备负载QR且37℃条件下自动成胶的温敏水凝胶(QR-polycaprolactone-polyglycol triblock,QR-PECT);表征水凝胶的温敏及流变特性;通过CCK-8实验评价水凝胶的细胞相容性;通过1,1-二苯基-2-吡啶并肼基(1,1-diphenyl-2-picrylhydrazyl radical,DPPH)自由基清除实验来评估水凝胶清除自由基的能力;通过活性氧(reactive oxygen species,ROS)检测试剂盒评价水凝胶清除细胞内ROS的能力;制备大鼠SCI全切模型,分为Sham组、SCI组、QR治疗组及QR-PECT水凝胶治疗组,应用BBB评分评估大鼠运动功能的恢复,应用尼氏染色观察神经元迁移浸润情况,通过HE染色评价水凝胶生物相容性。结果:制备的QR-PECT聚合物在37℃条件下形成水凝胶,并持续释放QR;CCK-8实验定量结果显示QR-PECT水凝胶治疗组与SCI组的细胞活力相当;DPPH清除实验显示,QR-PECT水凝胶治疗组的DPPH清除率达到60%,与QR治疗组相当;通过测量HT22细胞内的ROS荧光值,发现QR-PECT水凝胶治疗组的HT22细胞内荧光强度显著降低;SCI后8周,QR-PECT水凝胶治疗组大鼠运动功能明显恢复,尼氏染色显示QR-PECT水凝胶治疗组存在大量神经元浸润,HE染色结果显示QR-PECT水凝胶治疗组心、肝、脾、肺、肾与正常大鼠没有明显的差异。结论:QR-PECT水凝胶具有良好的生物相容性和抗氧化性,并能够促进大鼠SCI后神经元的再生和运动功能恢复。
关键词(KeyWords): 脊髓损伤;槲皮素;QR-PECT水凝胶;氧化性
基金项目(Foundation): 中央级公益性科研院所基本科研业务费专项资金项目(2021CZ-9)
作者(Author): 孙明明,张双悦,王秋颖,荆瀛黎,白帆,于艳
DOI: 10.16780/j.cnki.sjssgncj.20240003
参考文献(References):
- [1] Luo J, Shi X, Li L, et al. An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury[J]. Bioactive Materials, 2021, 6:4816-4829.
- [2] Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology[J]. J Neurotrauma, 2004, 21:1355-1370.
- [3] Ahuja CS, Nori S, Tetreault L, et al. Traumatic Spinal Cord Injury-Repair and Regeneration[J]. Neurosurgery, 2017, 80:S9-s22.
- [4] Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives:Drug design,development, and biological activities, a review[J]. Eur J Med Chem,2022, 229:1140-1168.
- [5] Fideles SOM, Decassia OA, Buchaim DV, et al. Influence of the Neuroprotective Properties of Quercetin on Regeneration and Functional Recovery of the Nervous System[J]. Antioxidants, 2023, 12:149.
- [6] Andres S, Pevny S, Ziegenha R, et al. Safety Aspects of the Use of Quercetin as a Dietary Supplement[J]. Mole Nutri Food Res, 2018, 62:1700447.
- [7] Liu H, Xu X, Tu Y, et al. Engineering Microenvironment for Endogenous Neural Regeneration after Spinal Cord Injury by Reassembling Extracellular Matrix[J]. ACS Appl Mater Interfaces, 2020,12:17207-17219.
- [8] Assuncao RC, Gomesed ED, Sousa N, et al. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration[J]. Stem Cells Int, 2015,2015:948040.
- [9] Tu Y, Chen N, Li C, et al. Advances in injectable self-healing biomedical hydrogels[J]. Acta Biomater, 2019, 90:1-20.
- [10] Qiao Z, Lv X, He S, et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings[J]. Bioact Mater, 2021, 6:2829-2840.
- [11] Sousaj JPM, Stratakis E, Mano J, et al. Anisotropic 3D scaffolds for spinal cord guided repair:Current concepts[J]. Biomater Adv, 2023, 148:2133-2153.
- [12] Lin Z, Xu S, Gao W, et al. A comparative investigation between paclitaxel nanoparticle-and nanocrystal-loaded thermosensitive PECT hydrogels for peri-tumoural administration[J]. Nanoscale, 2016, 8:18782-18791.
- [13] Eli I, Lerner DP, Ghogawala Z. Acute Traumatic Spinal Cord Injury[J]. Neurol Clin, 2021, 39:471-488.
- [14] Lu P, Wang Y, Grahaml L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury[J]. Cell,2012, 150:1264-1273.
- [15] Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20:637-647.
- [16] Thompson CD, Zurko JC, Hanna BF, et al. The therapeutic role of interleukin-10 after spinal cord injury[J]. J Neurotrauma, 2013, 30:1311-1324.
- [17] Duncan GJ, Manesh SB, Hilton BJ, et al. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury[J]. Glia,2020, 68:227-245.
- [18] Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents[J]. Proc Nutr Soc, 2010, 69:273-278.
- [19] Crasci L, Basllel L, Panico A, et al. Correlating In Vitro Target-Oriented Screening and Docking:Inhibition of Matrix Metalloproteinases Activities by Flavonoids[J]. Planta Med, 2017, 83:901-911.
- [20] Shen P, Lin W, Deng X, et al. Potential Implications of Quercetin in Autoimmune Diseases[J]. Front Immunol, 2021, 12:689-744.
- [21] Walish CM, Wychowanliec JK, Costello L, et al. An In Vitro and Ex Vivo Analysis of the Potential of GelMA Hydrogels as a Therapeutic Platform for Preclinical Spinal Cord Injury[J]. Adv Healthc Mater, 2023,12:230-251.
- [22] Wu W, Jia S, Xu H, et al. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury[J]. ACS Nano, 2023, 17:3818-3837.
- [23] Grewal AK, Singh TG, Sharma D, et al. Mechanistic insights and perspectives involved in neuroprotective action of quercetin[J]. Biomed Pharmacother, 2021, 140:1117-1129.
- [24] Khan H, Ullah H, Aschner M, et al. Neuroprotective Effects of Quercetin in Alzheimer's Disease[J]. Biomolecules, 2019, 10:59.
- [25] Perfeito R, Cunha OT, Rego AC. Reprint of:revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse[J]. Free Radic Biol Med, 2013, 62:186-201.
- [26] Rangel LE, Clin AL, Pazloyola AL, et al. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain[J]. Neuroscience, 2015, 285:97-106.
- [27] Fan B, Wei Z, Yao X, et al. Microenvironment Imbalance of Spinal Cord Injury[J]. Cell Transplant, 2018, 27:853-866.
- [28] Deepika, Maurya PK. Health Benefits of Quercetin in Age-Related Diseases[J]. Molecules, 2022, 27:2498.
- [29] Zhang Y, Yang S, Liu C, et al. Deciphering glial scar after spinal cord injury[J]. Burns Trauma, 2021, 9:tkab035.
- [30] Bellver-landete V, Bretheau F, Mailhot B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury[J]. Nat Commun, 2019, 10:518.
- [31] Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury[J]. Nat Med,2017, 23:818-828.