脑机接口技术运用于脊髓损伤康复领域的可视化分析Brain-Computer Interface Technology in Spinal Cord Injury Rehabilitation: A Bibliometric and Visualization Analysis
王彬,吴炼铧,刘小平,周娅,王大明,胡东霞
摘要(Abstract):
目的:对脑机接口技术(BCI)运用于脊髓损伤(SCI)康复领域相关文献的研究现状、热点和发展趋势进行可视化分析。方法:检索从建库至2023年7月30日Web of Science核心合集数据库中BCI技术运用于SCI领域的相关文献,采用CiteSpace 6.1.R6和Microsoft Excel 2023软件对数据进行可视化分析。结果:最终文献计量分析纳入400篇文献,其中期刊类论文310篇,综述类90篇。过去二十年该领域文献的年发文量呈现快速增长趋势。发文量最多的国家、作者和机构分别是美国、Collinger Jennifer L、Graz University Technology,共被引次数最高的期刊是J Neural Eng。以“functional electrical stimulation”、“movement”、“motor imagery”等频次较高的关键词为代表形成15个主要聚类和前16个爆发力最强的突显词,其中“restoration”、“interface”、“walking”、“gait”等从2018年开始持续至今,未来可能是研究趋势。结论:BCI技术运用于SCI康复领域研究热度持续增加,目前疗效上主要集中于对SCI导致四肢瘫患者上肢运动和手抓握功能的恢复;中枢机制上是诱导SCI后神经可塑性。未来的研究趋势和热点是探究BCI技术在改善SCI患者下肢步行或步态功能的康复效果及其疗效机制。
关键词(KeyWords): 脑机接口;脊髓损伤;康复;可视化分析
基金项目(Foundation): 江西省工信厅优势创新团队项目(No.G/Y2738);; 江西省中医药管理局科技计划项目(No.2021Z018,No.2023B0824);; 江西省卫生健康委员会科技计划项目(No.20171BBG70016)
作者(Author): 王彬,吴炼铧,刘小平,周娅,王大明,胡东霞
DOI: 10.16780/j.cnki.sjssgncj.20230557
参考文献(References):
- [1] Müller-Jensen L, Ploner CJ, Kroneberg D, et al. Clinical Presentation and Causes of Non-traumatic Spinal Cord Injury:An Observational Study in Emergency Patients[J]. Front Neurol, 2021, 12:1-12.
- [2] Hu X, Xu W, Ren Y, et al. Spinal cord injury:molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8:245.
- [3] Spinal Cord Injury(SCI)2016. Facts and Figures at a Glance[J]. J Spinal Cord Med, 2016, 39:493-494.
- [4] Cajigas I, Vedantam A. Brain-Computer Interface, Neuromodulation,and Neurorehabilitation Strategies for Spinal Cord Injury[J]. Neurosurg Clin N Am, 2021, 32:407-417.
- [5] Cervera MA, Soekadar SR, Ushiba J, et al. Brain-computer interfaces for post-stroke motor rehabilitation:a meta-analysis[J]. Ann Clin Transl Neurol, 2018, 5:651-663.
- [6] Ganzer PD, Colachis SC, Schwemmer MA, et al. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface[J]. Cell,2020, 181:763-773.
- [7] Huo C C, Zheng Y, Lu W W, et al. Prospects for intelligent rehabilitation techniques to treat motor dysfunction[J]. Neural Regen Res,2021, 16(2):264-269.
- [8] Synnestvedt M B, Chen C, Holmes J H. CiteSpace II:visualization and knowledge discovery in bibliographic databases[J]. AMIA Annu Symp Proc, 2005, 2005:724-728.
- [9] Nakagawa S, Samarasinghe G, Haddaway NR, et al. Research Weaving:Visualizing the Future of Research Synthesis[J]. Trends Ecol Evol, 2019, 34:224-238.
- [10]唐芷晴,刘天昊,韩凯月,等.近5年经颅磁刺激治疗脑卒中的可视化分析[J].中国康复理论与实践, 2023, 29:294-301.
- [11]刘明月,樊亚蕾,张蒙,等.近10年脑机接口技术用于脑卒中康复领域的可视化分析[J].中国康复理论与实践, 2023, 29:223-230.
- [12] Xu AH, Sun YX. Research hotspots and effectiveness of repetitive transcranial magnetic stimulation in stroke rehabilitation[J]. Neural Regen Res, 2020, 15:2089-2097.
- [13] Chen C. Searching for intellectual turning points:progressive knowledge domain visualization[J]. Proc Natl Acad Sci U S A, 2004, 101Suppl 1:5303-5310.
- [14]沈鹏,余帅江,卓秀建,等.基于CiteSpace的国内昏迷促醒研究计量学分析[J].中国康复医学杂志, 2021, 36:251-255.
- [15] Jorge A, Royston DA, Tyler-Kabara EC, et al. Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex[J]. Neurosurgery, 2020, 87:630-638.
- [16] Dekleva BM, Weiss JM, Boninger ML, et al. Generalizable cursor click decoding using grasp-related neural transients[J]. J Neural Eng, 2021,18:1-29.
- [17] Xu X, Li Y, Shi S, et al. The Application of Angiotensin Receptor Neprilysin Inhibitor in Cardiovascular Diseases:A Bibliometric Review From 2000 to 2022[J]. Front Cardiovasc Med, 2022, 9:1-14.
- [18] Zhou K, Zhou Y, Zeng Y, et al. Research Hotspots and Global Trends of Transcranial Direct Current Stimulation in Stroke:A Bibliometric Analysis[J]. Neuropsychiatr Dis Treat, 2023, 19:601-613.
- [19] Xu F, Zeng J, Liu X, et al. Exercise-Induced Muscle Damage and Protein Intake:A Bibliometric and Visual Analysis[J]. Nutrients, 2022, 14:1-20.
- [20] Zhang Q, Xiao Y, Liu Y, et al. Visualizing the intellectual structure and evolution of carbon neutrality research:a bibliometric analysis[J].Environ Sci Pollut Res Int, 2023, 30:75838-75862.
- [21] Brower V. When mind meets machine[J]. EMBO Rep, 2005, 6:108-110.
- [22] Flesher SN, Downey JE, Weiss JM, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control[J]. Science,2021, 372:831-836.
- [23] Cui Z, Li Y, Huang S, et al. BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training:a pilot study[J]. Cogn Neurodyn, 2022, 16:1283-1301.
- [24] Li L, Sun Y. Research hotspots and trends of the tele-rehabilitation for stroke survivors based on CiteSpace:A review[J]. Medicine(Baltimore),2023, 102:1-11.
- [25] Jovanovic LI, Kapadia N, Zivanovic V, et al. Brain-computer interface-triggered functional electrical stimulation therapy for rehabilitation of reaching and grasping after spinal cord injury:a feasibility study[J]. Spinal Cord Ser Cases, 2021, 7:1-11.
- [26] Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature,2012, 485:372-375.
- [27] Benabid AL, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient:a proof-of-concept demonstration[J]. Lancet Neurol, 2019, 18:1112-1122.
- [28] Bouton CE. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration[J]. Handb Clin Neurol, 2020, 168:303-309.
- [29] Ajiboye AB, Willett FR, Young DR, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia:a proof-of-concept demonstration[J]. Lancet,2017, 389:1821-1830.
- [30] Yang B, Zhang F, Cheng F, et al. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury[J]. Cell Death Dis,2020, 11:439.
- [31] Shokur S, Donati ARC, Campos DSF, et al. Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients[J]. PLoS One, 2018, 13:1-33.
- [32] Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury[J].Nature, 2018, 563:65-71.
- [33] Kathe C, Skinnider MA, Hutson TH, et al. The neurons that restore walking after paralysis[J]. Nature, 2022, 611:540-547.
- [34] Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface[J]. Nature, 2023, 618:126-133.